Number - Equivalent Fractions and Simplest Form

  a - answer    s - solution    v - video    d - discussion

Question 1


Find the numerator so that the fraction is equivalent to $\frac12$

a) $\frac{\square}{4}$a s v d
b) $\frac{\square}{6}$a s v d
c) $\frac{\square}{10}$a s v d
d) $\frac{\square}{14}$a s v d
e) $\frac{\square}{20}$a s v d
f) $\frac{\square}{28}$a s v d


Question 2


Find the numerator so that the fraction is equivalent to $\frac23$

a) $\frac{\square}{6}$a s v d
b) $\frac{\square}{9}$a s v d
c) $\frac{\square}{15}$a s v d
d) $\frac{\square}{27}$a s v d
e) $\frac{\square}{33}$a s v d
f) $\frac{\square}{54}$a s v d


Question 3


Find the numerator so that the fraction is equivalent to $\frac65$

a) $\frac{\square}{10}$a s v d
b) $\frac{\square}{20}$a s v d
c) $\frac{\square}{35}$a s v d
d) $\frac{\square}{50}$a s v d
e) $\frac{\square}{65}$a s v d
f) $\frac{\square}{95}$a s v d


Question 4


Find the numerator so that the fraction is equivalent to $\frac{24}{36}$

a) $\frac{\square}{18}$a s v d
b) $\frac{\square}{9}$a s v d
c) $\frac{\square}{12}$a s v d
d) $\frac{\square}{6}$a s v d
e) $\frac{\square}{3}$a s v d


Question 5


Find the denominator so that the fraction is equivalent to $\frac14$

a) $\frac{2}{\square}$a s v d
b) $\frac{3}{\square}$a s v d
c) $\frac{4}{\square}$a s v d
d) $\frac{6}{\square}$a s v d
e) $\frac{7}{\square}$a s v d
f) $\frac{11}{\square}$a s v d


Question 6


Find the denominator so that the fraction is equivalent to $\frac35$

a) $\frac{6}{\square}$a s v d
b) $\frac{9}{\square}$a s v d
c) $\frac{15}{\square}$a s v d
d) $\frac{30}{\square}$a s v d
e) $\frac{27}{\square}$a s v d
f) $\frac{39}{\square}$a s v d


Question 7


Find the denominator so that the fraction is equivalent to $\frac{9}{7}$

a) $\frac{18}{\square}$a s v d
b) $\frac{27}{\square}$a s v d
c) $\frac{45}{\square}$a s v d
d) $\frac{63}{\square}$a s v d
e) $\frac{81}{\square}$a s v d
f) $\frac{900}{\square}$a s v d


Question 8


Find the denominator so that the fraction is equivalent to $\frac{36}{48}$

a) $\frac{12}{\square}$a s v d
b) $\frac{18}{\square}$a s v d
c) $\frac{6}{\square}$a s v d
d) $\frac{9}{\square}$a s v d
e) $\frac{3}{\square}$a s v d


Question 9


Write $5$ equivalent fractions to the following:

a) $\frac12$a s v d
b) $\frac13$a s v d
c) $\frac25$a s v d
d) $\frac67$a s v d
e) $\frac94$a s v d
f) $\frac{14}{5}$a s v d
g) $\frac48$a s v d
h) $\frac{40}{30}$a s v d


Question 10


Write each fraction in its simplest form

a) $\frac36$a s v d
b) $\frac26$a s v d
c) $\frac28$a s v d
d) $\frac{5}{15}$a s v d
e) $\frac{7}{28}$a s v d
f) $\frac{10}{40}$a s v d
g) $\frac{12}{36}$a s v d
h) $\frac{7}{49}$a s v d
i) $\frac{6}{42}$a s v d
j) $\frac{8}{56}$a s v d


Question 11


Write each fraction in its simplest form

a) $\frac46$a s v d
b) $\frac{4}{10}$a s v d
c) $\frac{12}{20}$a s v d
d) $\frac{15}{18}$a s v d
e) $\frac{6}{16}$a s v d
f) $\frac{15}{24}$a s v d
g) $\frac{60}{100}$a s v d
h) $\frac{15}{35}$a s v d
i) $\frac{16}{36}$a s v d
j) $\frac{30}{78}$a s v d


Question 12


Write each fraction in its simplest form

a) $\frac{144}{200}$a s v d
b) $\frac{54}{90}$a s v d
c) $\frac{252}{288}$a s v d
d) $\frac{180}{315}$a s v d
e) $\frac{72}{60}$a s v d
f) $\frac{270}{342}$a s v d
g) $\frac{1080}{3600}$a s v d
h) $\frac{540}{648}$a s v d


Question 13


Which fraction is not equivalent to each of the others?

a) $\frac12$, $\frac{5}{10}$, $\frac{14}{20}$, $\frac{20}{40}$a s v d

b) $\frac59$, $\frac{35}{63}$, $\frac{10}{18}$, $\frac{40}{64}$a s v d

c) $\frac27$, $\frac{15}{56}$, $\frac{14}{49}$, $\frac{6}{21}$a s v d

d) $\frac34$, $\frac{18}{27}$, $\frac{34}{51}$, $\frac{40}{60}$a s v d



Question 14


Order the following fractions from smallest to largest

a) $\frac{2}{5}$, $\frac{1}{10}$, $\frac{9}{10}$, $\frac{1}{5}$a s v d

b) $\frac{3}{4}$, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{1}{10}$, $\frac{1}{2}$a s v d

c) $\frac{35}{42}$, $\frac{4}{24}$, $\frac{36}{54}$, $\frac{9}{18}$, $\frac{4}{12}$a s v d

d) $\frac{16}{88}$, $\frac{12}{33}$, $\frac{50}{55}$, $\frac{45}{99}$, $\frac{77}{121}$a s v d